Branched thalamic afferents: what are the messages that they relay to the cortex?
نویسندگان
چکیده
Many of the axons that carry messages to the thalamus for relay to the cerebral cortex are branched in a pattern long known from Golgi preparations. They send one branch to the thalamus and the other to motor centers of the brainstem or spinal cord. Because the thalamic branches necessarily carry copies of the motor instructions their messages have the properties of efference copies. That is, they can be regarded as providing reliable information about impending instructions contributing to movements that will produce changes in inputs to receptors, thus allowing neural centers to compensate for these changes of input. We consider how a sensory pathway like the medial lemniscus, the spinothalamic tract or the optic tract can also be seen to act as a pathway for an efference copy. The direct connections that ascending and cortical inputs to the thalamus also establish to motor outputs create sensorimotor relationships that provide cortex with a model of activity in lower circuits and link the sensory and the motor sides of behavior more tightly than can be expected from motor outputs with a single, central origin. These transthalamic connectional patterns differ from classical models of separate neural pathways for carrying efference copies of actions generated at higher levels, and introduce some different functional possibilities.
منابع مشابه
Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism
Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملSelective targeting of the dendrites of corticothalamic cells by thalamic afferents in area 17 of the cat.
Pyramidal cells of layer 6 in cat visual cortex are the source of the corticothalamic projection, and their recurrent collaterals provide substantially more excitatory synapses in layer 4 than does the thalamic input. They have predominantly simple receptive fields and can be driven monosynaptically by electrically stimulating thalamic relay cells. Layer 6 cells could thus provide a significant...
متن کاملActivation of thalamic ventroposteriolateral neurons by phrenic nerve afferents in cats and rats.
It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research reviews
دوره 66 1-2 شماره
صفحات -
تاریخ انتشار 2011